Chen-Chi Wu, Prashant Singh, Mao-Chuain ChenLaurent Zimmerli. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J Exp Bot. 2010 February; 61(4): 995–1002.

Lu JQ, Liu WF, Tang CF. Effects of psychic ability and glutamine for different time sleep deprivation.

Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2011 Aug;27(3):361-2, 371, 383.

Elia M, Lunn PG (1997). The use of glutamine in the treatment of gastrointestinal disease in man. Nutrition 13:743–747.

Kuhn KS, Stehle P, Furst P (1996). Glutamine content of protein and peptide-based enteral products. J Parent Enteral Nutr 20:292–295.

Fürst P, Pogan K, Stehle P. Glutamine dipeptides in clinical nutrition. Nutrition. 1997 Jul-Aug;13(7-8):731-7.

Fürst P. New developments in glutamine delivery. J Nutr. 2001 Sep;131(9 Suppl):2562S-8S.

Fürst P, Pogan K, Stehle P. Glutamine dipeptides in clinical nutrition. Nutrition. 1997 Jul-Aug;13(7-8):731-7.

Fürst P, Albers S, Stehle P Glutamine-containing dipeptides in parenteral nutrition. JPEN J Parenter Enteral Nutr. 1990 Jul-Aug;14(4 Suppl):118S-124S.

Kékesi, Katalin A., Dobolyi, Árpád, Salfay, Orsolya, Nyitrai, Gabriella, Juhász, Gábor. Slow wave sleep is accompanied by release of certain amino acids in the thalamus of cats. 24 March 1997 – Volume 8 – Issue 5 – p 1183-1186.

Nitz D, Siegel JM. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience. 1997 Jun;78(3):795-801.

Nitz D, Siegel J. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol. 1997 Jul;273(1 Pt 2):R451-5.

Luppi PH, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev. 2011 Jun;15(3):153-63. Epub 2010 Nov 5.

Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris. 2006 Nov-Dec;100(5-6):271-83. Epub 2007 Jun 8.

Dash MB, Bellesi M, Tononi G, Cirelli C. Sleep/wake dependent changes in cortical glucose concentrations. J Neurochem. 2012 Oct 25. doi: 10.1111/jnc.12063. [Epub ahead of print]

Šaponjić J. Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms. Glas Srp Akad Nauka Med. 2011;(51):85-97.

Datta S, Siwek DF. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol. 1997 Jun;77(6):2975-88.

Datta S, Spoley EE, Patterson EH. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol. 2001 Mar;280(3):R752-9.

Datta S, Siwek DF. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res. 2002 Nov 15;70(4):611-21.

Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28:197–276.

Datta S. Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor. J Neurophysiol. 2002 Apr;87(4):1790-8.

Datta S, Siwek DF. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 77:2975–2988.

Davies J, Watkins JC. Depressant actions of gamma-D-glutamylaminomethyl sulfonate (GAMS) on amino acid-induced and synaptic excitation in the cat spinal cord. Brain Res. 1985 Feb 18;327(1-2):113-20.